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INTRODUCTION

6

Introduction

• This review covers the essentials of 
marginal analysis and linear functions for 
students taking introductory courses in 
economics.

• Its primary focus is on the use and 
interpretation of graphs. 
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Introduction

• It does not require calculus but some slides 
(marked with “*”) make a link to calculus 
for the benefit of students familiar with it.

• It also uses the language of calculus in some 
instances as a way to provide students with 
some exposure to mathematical notation 
and its value in expressing economic ideas 
with clarity and precision. 

PART 1: MARGINAL ANALYSIS
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Marginal Analysis

• Consider an activity that can be undertaken 
in variable amounts (as opposed to binary 
activities that are “all or nothing”).
– Example: household electricity consumption.

• We will first describe the marginal benefit
and marginal cost of this activity, and then 
bring these two concepts together to 
characterize optimal behaviour.

10

Marginal Analysis

• The goal here is to understand how we can 
describe optimizing behaviour using simple 
marginal cost and marginal benefit curves, 
and why we can measure total costs and 
benefits as areas under these curves.
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1.1 MARGINAL BENEFIT

12

Marginal Benefit

• Suppose initially that the activity can be 
undertaken only in discrete amounts.

• Example:
– electricity can be purchased only in integer 

blocks of 100 kWh (enough to run a 100 watt 
light bulb for 1000 hours).
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Marginal Benefit

• Imagine for the moment that a household is 
allowed to purchase no more than one block 
of electricity per month.

• They would use this electricity for the 
services that are most valuable to them.

• Suppose their willingness-to-pay for this 
first block is 28 cents per kWh (for a total 
of $28 for the 100 kWh block).

14

Marginal Benefit

• Note that willingness-to-pay (WTP) here 
implicitly means maximum WTP, and it 
reflects the preferences and income of the 
household.

• Let us plot this WTP in a bar graph, where 
the vertical height of the bar depicts WTP 
measured in cents per kWh, and the 
horizontal axis measures consumption.
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FIGURE A-1 15
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Marginal Benefit

• Now suppose the household can purchase a 
second block of electricity per month.

• The first block is already allocated to the 
most important uses, so the second block 
will not be quite as valuable to the 
household.

• Suppose WTP for the second block is 26 
cents per kWh (a total of $26 for the block).
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FIGURE A-2 17
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Marginal Benefit

• Continue this valuation of additional blocks 
of electricity until WTP falls to zero (where 
additional electricity is of no value to the 
household at all).

• Suppose the resulting WTP schedule is as 
follows.
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FIGURE A-3 19
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Marginal Benefit

• In the example illustrated, WTP falls 
linearly (at a constant rate of 2 cents per 
kWh for each additional block) but it could 
of course fall according to a different 
pattern, depending on household 
preferences and income.

• The particular pattern of decline is 
unimportant for our purposes.
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Marginal Benefit

• The vertical heights depicted in Figure A-3 
are marginal benefit values for the 
household:
– they measure the benefit per kWh (as measured 

by WTP) from each incremental block of 
electricity.

22

Marginal Benefit

• We can use this marginal benefit data to 
construct the total benefit to the household 
from any given level of electricity 
consumption.

• This total benefit is represented as an area
on our marginal benefit graph.

• For the first block consumed:
– total benefit = 28 c/kWh x 100 kWh = $28
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FIGURE A-4 23
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Marginal Benefit

• Note that units of measure are important: 
– Marginal benefit is measured as a rate (in units 

of money per kWh) while total benefit is 
measured as an absolute (in units of money)

– Thus, the calculation of total benefit is

28$cents2800kWh100*
kWh
cents28 ==
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Marginal Benefit

• Similarly, total benefit from the second 
block is calculated as

• Thus, from the first two blocks combined:
– total benefit = $28 + $26 = $54

26$cents2600kWh100*
kWh
cents26 ==

FIGURE A-5 26
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Marginal Benefit

• From the first three blocks combined:
– total benefit = $54 + $24 = $78

FIGURE A-6 28
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Marginal Benefit

• Following this procedure, we can calculate 
the area representing the cumulative benefit 
as consumption rises until additional 
consumption yields no additional benefit.

• At 1400 kWh, the total benefit from 
consumption is $210; see Figure A-7.

FIGURE A-7 30
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Marginal Benefit

• We can write this calculation of total benefit 
from 14 blocks consumed as

where b1 = $28 is the total benefit from the 
first block, b2 = $26 is the total benefit from 
the second block, etc.

∑
=

=++++=
14

1
1432114 ...

i
ibbbbbB

32

Marginal Benefit

• In general, the total benefit from x blocks 
consumed is

∑
=

=
x

i
ix bB

1
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Marginal Benefit

• An alternative way to present the total 
benefit data is in a separate bar graph, 
where the vertical height of a bar measures 
the total benefit from the given number of 
blocks consumed.

• See Figure A-8, where vertical axis 
measures dollars of benefit.
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FIGURE A-9 35
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FIGURE A-10 36
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Marginal Benefit

• Proceeding in this way yields the total 
benefit schedule; see Figure A-11.

FIGURE A-11 38
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Marginal Benefit

• Note that the height of the total benefit 
graph at 14 units in Figure A-11 is equal to 
the area we calculated from the marginal 
benefit graph in Figure A-7:

• In both cases we are adding-up the benefit 
from each block to calculate total benefit.

210
14

1
14 == ∑

=i
ibB

40

Marginal Benefit
Using Continuous Variables

• Now suppose that electricity can be 
purchased in infinitesimally small amounts 
(tiny fractions of a kWh) rather than 
discrete blocks of 100 kWh each.

• We can then effectively treat electricity as a 
continuous variable. 
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Marginal Benefit

• Using a continuous variable also allows us 
to use calculus, though a knowledge of 
calculus is not needed here.

• Slides marked with “*” introduce calculus 
and are intended only for those students 
with a prior knowledge of calculus.

• Other students can simply skip these slides.

42

Marginal Benefit

• Consider the transformation of the marginal 
benefit schedule as we move from the 
discrete variable framework to a framework 
with a continuous variable.

• As a starting point, let us suppose that 
electricity can now be purchased in half-
blocks (each comprising 50 kWh).
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Marginal Benefit

• The WTP for any given block of 100kWh is 
unchanged but within that block, the WTP 
for the first half will be greater than WTP 
for the second half.

44

Marginal Benefit

• Why? The explanation is the same as for 
why the first full block is more highly 
valued than the second full block:
– electricity is allocated by the household to its 

various uses in order of importance, and hence 
value.
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Marginal Benefit

• Recall that WTP for the first block of 
100kWh is 28 cents per kWh.

• We can now think of that as the average of 
the WTP per kWh for the first half-block 
and the WTP per kWh for the second half-
block. 

46

Marginal Benefit

• For example, these half-block WTP values 
might be 28.5 cents per kWh for the first 
half-block and 27.5 cents per kWh for the 
second half-block, for an average of 28 
cents per kWh for the block as a whole:

28
2

5.275.28
=

+
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Marginal Benefit

• Graphically, we are splitting the total 
benefit from the first block into two areas 
that sum to $28:

kWh50*c/kWh5.28

28$
75.13$25.14$

=
+=

kWh50*c/kWh5.27
+

48

Marginal Benefit

• Graphically, we are splitting the total 
benefit from the first block into two areas 
that sum to $28:

• See Figure A-12

kWh50*c/kWh5.28

28$
75.13$25.14$

=
+=

kWh50*c/kWh5.27+
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FIGURE A-12 49
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Marginal Benefit

• We can make the same transformation to 
the other blocks, splitting each block into 
two halves, where the WTP for the first half 
will be greater than the WTP for the second 
half, but the total for the block as a whole is 
unchanged.

• For example, splitting the second block 
yields two areas that sum to $26.



Kennedy: Analytical Methods Copyright Peter Kennedy 2019

kennedy-economics.ca 26

FIGURE A-13 51
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Marginal Benefit

• Let us now take one step further towards 
thinking in terms of a continuous variable 
by splitting the first block into four quarters 
of 25kWh each.
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Marginal Benefit

• The average of 28 cents per kWh for that 
first block might be made up:

28.75 c/kWh for the first 25kWh
28.25 c/kWh for the next 25 kWh
27.75 c/kWh for the next 25 kWh
27.25 c/kWh for the next 25 kWh

54

Marginal Benefit

• Confirm that the average WTP across these 
four quarters is still 28 c/kWh:

28
4

25.2775.2725.2875.28
=

+++
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Marginal Benefit

• The total WTP for the block is still $28; we 
have simply divided the benefit from that 
first block into four areas that sum to $28:

$7.10kWh 25*c/kWh75.28 =
$7.06kWh 25*c/kWh25.28 =
$6.94kWh 25*c/kWh75.27 =
$6.81kWh 25*c/kWh25.27 =

FIGURE A-14 56
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Marginal Benefit

• Again, we can do the same for the second 
and subsequent blocks.

• Moreover, we can continue to split the 
blocks increasingly finely until we 
effectively have a continuous variable for 
electricity consumption, and a continuous 
decline in WTP within any block.

• See Figure A-15 for the first block.

FIGURE A-15 58
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Marginal Benefit

• The area under the continuous WTP 
schedule for the first 100 kWh is still $28:
– the area of the lower rectangle in Figure A-15 

(below the dashed line) is 

– the area of the upper triangle (above the dashed 
line) is 

2727*1 =

1)2*1(2
1 =

60

Marginal Benefit

• This combined area under the continuous 
graph can be thought of as the sum of an 
infinite number of infinitesimally small 
rectangular areas (akin to those in Figure A-
14) as we split the first 100 kWh block into 
tiny fractions of a kWh.
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Marginal Benefit

• Applying this same logic to the second and 
subsequent blocks allows us to represent the 
WTP data with a continuous WTP schedule. 

FIGURE A-16 62
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Marginal Benefit

• If the household is not constrained to 
purchase discrete blocks, and may instead 
purchase electricity in any amount, then we 
can dispense with the blocks entirely.

• We can simply graph WTP as a continuous 
marginal benefit schedule, as in Figure A-
17.

FIGURE A-17 64
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Marginal Benefit

• Let us now summarize and formalize the 
interpretation of this continuous marginal 
benefit schedule.

• Let z denote the consumption of electricity 
(where the unit of measure is kWh).

• Let MB(z) denote the marginal benefit from 
electricity consumption, measured in $ per 
unit.

66

Marginal Benefit

• Suppose the household is currently 
consuming z0 kWh of electricity.

• The total benefit from this consumption is 
the area under the MB(z) schedule between 
zero and z0, and is denoted B(z0).

• See Figure A-18.
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FIGURE A-18 67
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Marginal Benefit

• This area is called the definite integral of 
the marginal benefit function between zero 
and z0, and it is written as

∫=
0

0

0 )()(
z

dzzMBzB
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Marginal Benefit

• This benefit measure is the maximum that 
the household would be willing to pay for z0

kWh of electricity.
• Their WTP for any additional amount – call 

it Δz – is the area under the MB(z) schedule 
between z0 and z0+ Δz, labeled ΔB in Figure 
A-19. 

FIGURE A-19 70
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Marginal Benefit

• This area is called the definite integral of 
the marginal benefit function between z0

and z0+ Δz, and it is written as

where the vertical bar means “evaluated at”.

∫
Δ+

=
=

Δ
zz

z

dzzMB
zz

B
0

0

)(
0

72

Marginal Benefit

• Let us use our discrete-variable WTP data 
to construct a numerical example.

• The functional form that fits our data is

where MB is measured in cents per kWh, 
and z is measured in kWh x 100.

• See Figure A-20.

zzMB 229)( −=
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FIGURE A-20 73
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Marginal Benefit

• Suppose the household currently consumes 
exactly 700 kWh of electricity (seven of our 
previous discrete blocks).

• The total benefit from this consumption can 
be calculated as the sum of the two areas in 
Figure A-21.
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FIGURE A-21 75
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Marginal Benefit

• The total benefit (measured in $) is:

154
2

7 x 147 x 1521 =+=+ AA
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Marginal Benefit

• Now compare this value with the data from 
our discrete-value total benefit schedule.

FIGURE A-22 78
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Marginal Benefit

• This relationship between the area under the 
continuous MB(z) schedule and the total 
benefit schedule holds at every level of 
consumption in the discrete data.

• Exercise: show that it holds at 1000 kWh.

80

* Marginal Benefit *

• If you know calculus, compare this area 
with the evaluation of the definite integral.

• The definite integral of interest is

( )∫ −=
7

0

229)7( dzzB
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* Marginal Benefit *

• Evaluating this integral yields

• This is necessarily the same value as the 
area we calculated from Figure A-21.

[ ] [ ] 1540)7()7(2929)7( 27

0
2 =−−=−= zzB

82

Marginal Benefit

• Similarly, we can calculate the additional
benefit from increasing consumption from 
700 kWh to 800 kWh.

• See Figure A-23.
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FIGURE A-23 83
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Marginal Benefit

• This area is the definite integral:

and we can calculate it from our graph as 
the sum of the two areas in Figure A-24.

( )∫ −=
=

Δ
8

7

229
7

dzz
z

B
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FIGURE A-24 85
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Marginal Benefit

• The area of the shaded triangle (measured in 
$) is

• The area of the shaded rectangle is $13.
• Hence, the total area is $14.

1
2

1 x 2
=
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Marginal Benefit

• Now compare this with the marginal benefit 
of the 8th unit from our discrete WTP data.

FIGURE A-25 88
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Marginal Benefit

• Again, this relationship between our 
continuous MB(z) schedule and our discrete 
WTP data holds at any level of 
consumption.

• Exercise: show that it holds for an increase 
in consumption from 300 kWh to 400 kWh.

90

* Marginal Benefit *

• If you know calculus, evaluate the integral 
on slide 79 to yield

[ ]
[ ] [ ]
14

)7()7(29)8()8(29
29

22

8
7

2

=
−−−=

−=Δ

      
      

zzB
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Marginal Benefit

• We have so far constructed a continuous 
representation of the marginal benefit 
schedule.

• It is also useful to construct a continuous 
representation of the total benefit schedule. 

• To begin, recall our total benefit schedule 
for the discrete data.

FIGURE A-26 92
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Marginal Benefit

• Now fit a continuous curve that interpolates 
values between the integer consumption 
levels to construct a continuous total benefit 
function.

• See Figure A-27.

FIGURE A-27 94
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Marginal Benefit

• Let us conduct this interpolation exercise a 
bit more rigorously.

• Recall that we constructed the total benefit 
schedule from our discrete data by adding-
up the benefits from each block consumed.

96

Marginal Benefit

• In particular, the total benefit from x units 
was calculated as

∑
=

=
x

i
ix bB

1
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Marginal Benefit

• The continuous-variable analogue of 
“adding-up” is integration (that is, taking an 
area). 

• Thus, the value of the total benefit function 
at any given consumption level z0 is simply

∫=
0

0

0 )()(
z

dzzMBzB

98

Marginal Benefit

• By calculating this integral (which is just an 
area) at every possible value of z0 and 
plotting the results, we can derive the total 
benefit function, denoted B(z).

• See Figure A-28.



Kennedy: Analytical Methods Copyright Peter Kennedy 2019

kennedy-economics.ca 50

FIGURE A-28 99
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* Marginal Benefit *

• If you know calculus, recall from our 
example data that

• Hence, the total benefit when z = x is

zzMB 229)( −=

2

0
29)229()( xxdzzxB x
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*Marginal Benefit *

• Since x is just a particular value of z, and 
could potentially be any value of z, we 
typically just use z in place of x when we 
write the total benefit function:

• See Figure A-29.

229)( zzzB −=
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Marginal Benefit

• To summarize, we construct the total 
benefit schedule by integrating (taking an 
area) under the marginal benefit schedule.

104

Marginal Benefit

• We can also go in the reverse direction:
– we can construct the marginal benefit function 

from the total benefit function by calculating its 
slope.
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105

Marginal Benefit

• In particular, the marginal benefit function 
measures the rate of change (or slope) of 
the total benefit function.

• To find the rate of change of a non-linear 
continuous function at a particular point, we 
calculate the slope of a tangent to the 
function at that point.

106

Marginal Benefit

• For example, what is the rate of change of 
the total benefit function at 700 kWh?

• To calculate this exactly we would need to 
derive the specific continuous function 
representing total benefit.

• This requires calculus so we will not do it 
here, but Figure A-30 illustrates the result 
we would obtain.
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FGIURE A-30 107
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Marginal Benefit

• From Figure A-30, the slope of the tangent 
at 700 kWh is

where this ratio is measured in c/kWh (or 
equivalently, $/100 kWh).
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Marginal Benefit

• Now compare this with our MB(z) schedule 
at 700 kWh.

FIGURE A-31 110
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Marginal Benefit

• This relationship between the slope of the 
total benefit function and the marginal 
benefit function holds at every value of z. 

112

Marginal Benefit

• To summarize, the marginal benefit 
function measures the rate of change (or 
slope) of the total benefit function, and total 
benefit is measured as an area under the 
marginal benefit function.
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* Marginal Benefit *

• If you know calculus, the marginal benefit 
function is the first derivative of the total 
benefit function:

dz
zdBzMB )()( =

114

* Marginal Benefit *

• Recall that the total benefit function is

• Differentiation with respect to z yields

229)( zzzB −=

zzMB 229)( −=
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* Marginal Benefit *

• This reflects the fact that differentiation is 
essentially the “reverse” of integration, and 
we constructed B(z) by integrating MB(z).

• Thus,

)(
)(

)( zMB
dz

dzzMBd

dz
zdB

=
⎟
⎠
⎞

⎜
⎝
⎛

=
∫

1.2 MARGINAL COST
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Marginal Cost

• We have so far focused exclusively on the 
benefits from an activity. 

• Choices about how much of an activity to 
undertake involve balancing benefits and 
costs, and it is in the study of these choices 
that marginal analysis is most useful.

118

Marginal Cost

• Suppose our household cannot purchase 
electricity on the market but must instead 
generate their own electricity (by spinning a 
turbine by hand, for example).

• This is time-consuming and tiring, and 
hence costly.
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Marginal Cost

• In particular, time and effort devoted to 
generating electricity must be taken away 
from some other valuable activity, and 
hence it has an opportunity cost.

• In general, the opportunity cost of an 
activity measures the value of the next best
alternative use of the resources used in that 
activity.

120

Marginal Cost

• The marginal cost (MC) of an activity 
measures the opportunity cost of 
undertaking one more unit of that activity.
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121

Marginal Cost

• In the context of our electricity example, 
suppose the continuous marginal cost 
schedule for generating electricity is as 
depicted in Figure A-32, where z denotes 
electricity production in kWh.
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Marginal Cost

• Why is this MC schedule upward-sloping?
– if the household behaves rationally, then the 

time devoted to generating the first units of 
electricity are taken away from the least 
valuable alternative uses of that time, so the 
cost is relatively low.

– but as more electricity is produced, the required 
time must be taken away from increasingly 
valuable alternative uses.

124

Marginal Cost

• The particular shape (and intercept) of the 
MC(z) illustrated in Figure A-32 are not 
especially important for our purposes.

• The critical feature is its positive slope.
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Marginal Cost

• The total cost of generating a given amount 
of electricity (excluding fixed costs, which 
are independent of the quantity generated) 
is calculated as an area under the MC(z) 
schedule.

• The logic is precisely the same as that 
underlying our calculation of total benefit.

126

Marginal Cost

• For example, the total cost of producing 900 
kWh is $81, as illustrated in Figure A-33 .
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FIGURE A-33 127
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Marginal Cost

• In general, the total cost in dollars of 
producing z0 units is

where MC is measured in dollars per unit.

∫=
0

0

0 )()( z dzzMCzC
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FIGURE A-34 129
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Marginal Cost

• We can also construct a separate total cost 
schedule by plotting C(z0) at every possible 
value of z0.

• For the particular example, the total cost 
schedule looks as follows.
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FIGURE A-35 131
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Marginal Cost

• The marginal cost function measures the 
rate of change (or slope) of this total cost 
function.

• Recall that to find the rate of change of a 
continuous function at a particular point, we 
calculate the slope of a tangent to the 
function at that point.
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Marginal Cost

• For example, what is the rate of change of 
total cost at 1000 kWh?

• To calculate this exactly we would need to 
derive the specific continuous function 
representing total cost.

• This requires calculus so we will not do it 
here, but Figure A-36 illustrates the result 
we would obtain.
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* Marginal Cost *

• If you know calculus, C(z) is constructed 
by evaluating the indefinite integral 

∫ == 2)2()( zdzzzC

136

Marginal Cost

• The slope of the tangent at 1000 kWh is

where this ratio is measured in c/kWh, or 
equivalently, $/100 kWh.
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Marginal Cost

• Now compare this with our MC(z) schedule 
at 1000 kWh.

FIGURE A-37 138
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Marginal Cost

• This relationship between the slope of the 
total cost function and the marginal cost 
function holds at every value of z. 

140

Marginal Cost

• To summarize, the marginal cost function 
measures the rate of change (or slope) of the 
total cost function, and total cost is 
measured as an area under the marginal cost 
function. 
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* Marginal Cost *

• If you know calculus, the marginal cost 
function is the first derivative of the total 
cost function:

dz
zdCzMC )()( =

142

* Marginal Cost *

• Recall that the total cost function is

• Differentiation with respect to z yields

2)( zzC =

zzMC 2)( =
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1.3 OPTIMIZATION

144

Optimization

• We now want to use marginal analysis to 
characterize optimal decision-making.

• In particular, how much electricity should 
our household generate?
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145

Optimization

• Our behavioral assumption is that the 
household acts to maximize the net benefit
from the activity, where net benefit is the 
difference between total benefit and total 
cost:

)()()( zCzBzNB −=

146

Optimization

• In graphical terms, NB(z) is the vertical 
distance between B(z) and C(z).

• See Figure A-38.
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Optimization

• At what level of z is NB(z) maximized?
• We can solve this problem using marginal 

analysis, as follows.
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149

Optimization

• Suppose the household is currently 
producing z0 units of electricity, with an 
associated cost of C(z0) and an associated 
benefit of B(z0).

150

Optimization

• Recall that these cost and benefit values are  
measured as areas under the MC(z) and 
MB(z) schedules respectively; see Figures 
A-39 and A-40.
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FIGURE A-39 151
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Optimization

• The net benefit at z0 is the difference 
between these two areas; see Figure A-41.

FIGURE A-41 154

z

)(zMC

)(zMB

0z

)( 0zNB

$ per unit



Kennedy: Analytical Methods Copyright Peter Kennedy 2019

kennedy-economics.ca 78

155

Optimization

• Now consider the following experiment:
– Suppose the household increases its production 

by a small amount, Δz.
– This yields an increase in cost and an increase

in benefit, equal to ΔC and ΔB respectively; see 
Figures A-42 and A-43.
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Optimization

• Starting at z0, it is clear from the figures that 
a small increase in z adds more to benefit 
than it adds to cost.

• Thus, net benefit rises by ΔNB; see Figure 
A-44.
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Optimization

• The logic is as follows:
– At z0, MB(z0) > MC(z0)
– This means that a small increase in z leads to an 

increase in total benefit that exceeds the 
increase in total cost.

– It follows that the small increase in z must 
cause net benefit to rise.

– Thus, net benefit was not maximized at z0
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Optimization

• This same logic holds for any level of z at 
which MB(z) > MC(z).

• It follows that net benefit cannot be 
maximized at any level of z at which MB(z) 
> MC(z).

162

Optimization

• Now consider the opposite scenario, where 
the current level of electricity generation is 
at a level where MB(z) < MC(z); see Figure 
A-45.
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FIGURE A-45 163

z

)(zMC

)(zMB

0z

$ per unit

164

Optimization

• Consider the following experiment:
– Suppose the household reduces its production 

by a small amount, Δz.
– This yields a reduction in cost and a reduction

in benefit, equal to ΔC and ΔB respectively; see 
Figures A-46 and A-47.
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FIGURE A-46 165
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Optimization

• Starting at z0, it is clear from the figures that 
a small reduction in z reduces cost by more 
than it reduces benefit.

• Thus, net benefit rises by ΔNB; see Figure 
A-48.
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Optimization

• The logic is as follows:
– At z0, MC(z0) > MB(z0)
– This means that a small reduction in z causes a 

reduction in total cost that exceeds the 
reduction in total benefit.

– It follows that the small reduction in z must 
cause net benefit to rise.

– Thus, net benefit was not maximized at z0.

170

Optimization

• This same logic holds for any level of z at 
which MC(z) > MB(z).

• It follows that net benefit cannot be 
maximized at any level of z at which MC(z) 
> MB(z).
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Optimization

• To summarize the results from our two 
experiments:
– Net benefit is not maximized at any z at which 

MB(z) > MC(z)
– Net benefit is not maximized at any z at which 

MC(z) > MB(z)
• Now consider the knife-edge case where 

MC(z) = MB(z); see Figure A-49.
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Optimization

• In Figure A-49, MC(z) > MB(z) at any z > 
z^.

• This means that a small increase in z causes 
an increase in total cost that exceeds the 
increase in total benefit.

• It follows that a small increase in z must 
cause net benefit to fall; see Figures A-50 
and A-51.

ẑ
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Optimization

• Conversely, MC(z) < MB(z) at any z < z^.
• This means that a small reduction in z 

causes a reduction in total cost that is less 
than the reduction in total benefit.

• It follows that a small reduction in z must 
cause net benefit to fall; see Figures A-52 
and A-53.
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FIGURE A-52 177
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Optimization

• We therefore have the following 
fundamental result:
– Net benefit is maximized at z^, where

)ˆ()ˆ( zMCzMB =

180

Optimization

• We can see this same result in a graph of 
total benefit and total cost.

• Recall that MB(z) measures the slope of a 
tangent to B(z), and that MC(z) measures 
the slope of a tangent to C(z). 

• These two slopes are equal at z^; see Figure 
A-54.



Kennedy: Analytical Methods Copyright Peter Kennedy 2019

kennedy-economics.ca 91

FIGURE A-54 181
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Optimization

• At values of z below z^ in Figure A-54, total 
benefit is rising faster than total cost as z
rises (the rate of change of total benefit is 
higher than the rate of change of total cost).

• Thus, net benefit rises as z rises.
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Optimization

• Conversely, at values of z above z^ in 
Figure A-54, total cost is falling faster than 
total benefit as z falls (the rate of change of 
total cost is higher than the rate of change of 
total benefit).

• Thus, net benefit rises as z falls.
• It follows that net benefit is maximized at 

z^.

184

* Optimization *

• If you know calculus, start with the net 
benefit function:

)()()( zCzBzNB −=
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* Optimization *

• To maximize the function, differentiate with 
respect to z and set the derivative equal to 
zero.

• This identifies a turning point in NB(z).

* FIGURE A-55 * 186
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* Optimization *

• Taking the derivative yields

• Setting this derivative equal to zero yields
dz

zdC
dz

zdB
dz

zdNB )()()(
−=

dz
zdC

dz
zdB )()(
=

188

* Optimization *

• That is,

• A sufficient (second-order) condition for a 
maximum is that NB(z) is strictly concave:

)()( zMCzMB =

0)(
2

2
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dz

zNBd
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* Optimization *

• Note that

2

2
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* Optimization *

• Thus, sufficient conditions for

are
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* Optimization *

• That is, MB(z) is downward-sloping, and 
MC(z) is upward-sloping, as per our graphs.

• Note that these are sufficient but not 
necessary conditions; we require only that 
NB(z) is strictly concave.

192

Optimization

• Let us illustrate this characterization of the 
optimum in the context of our electricity 
example (see Figure A-56).
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Optimization

• Finding the solution in Figure A-56 – the 
intersection of the two graph – requires a 
knowledge of linear functions. 

• We will encounter functions of this type 
throughout the course, so it is important to 
have a good understanding of them.

• Let us review the essentials.
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PART 2: WORKING WITH
LINEAR FUNCTIONS

2.1 SLOPES AND INTERCEPTS
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* Technically, this is an "affine" 
function if b is not zero

197

Working with Linear Functions

• The general form of a linear function* is 

where a is the slope and b is the vertical 
intercept when f(x) is plotted against x.

• See Figure A-57 for the case where a>0.
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Working with Linear Functions

• The slope of the function has the following 
graphical interpretation:

run horizontal
rise  verticalslope =

200

Working with Linear Functions

• Thus, for any change in x (denoted Δx) we 
can calculate the change in the value of the 
function (denoted Δf(x)) 

• See Figure A-58.

xaxf Δ=Δ )(
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FIGURE A-58 201
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2.2 CALCULATING AREAS
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Calculating Areas

• We can also easily calculate areas under a 
linear function because for linear functions, 
these areas comprise combinations of 
rectangles and triangles. 

• Consider the shaded area in Figure A-59.
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Calculating Areas

• This area is calculated as the sum of areas A 
and B, where 

2
)(

2
)( 2xaxaxA Δ
=

ΔΔ
=

)( 0yxB Δ=
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Calculating Areas

• Thus, the area in Figure A-59 is
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Calculating Areas

• Now consider the case where a<0; see 
Figure A-60.
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Calculating Areas

• Consider the area in Figure A-61.

FIGURE A-61 210
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Calculating Areas

• This is calculated using the same formula as 
for the a>0 case:

where the first RHS term is negative when 
a<0; see Figures A-62 and A-63. 
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FIGURE A-63 213
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Calculating Areas

• Similarly, the area to the left of a graph can 
be calculated as the sum of two areas; see 
Figure A-64.
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FIGURE A-64 215
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Calculating Areas

• The area in Figure A-64 is calculated as the 
sum of areas C and D, where

)(0 xaxC Δ=

2
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2.3 SOLVING PAIRS OF EQUATIONS

218

Solving Pairs of Equations

• Now suppose we have a pair of linear 
functions, and we wish to solve for where 
they intersect.
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Solving Pairs of Equations

• Suppose our two functions are

where a1>0 and a2<0; see Figure A-65.
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222)( bxaxf +=

FIGURE A-65 220

111)( bxaxf +=

222)( bxaxf +=1b

2b

2

2

a
b− x
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Solving Pairs of Equations

• The intersection of these two functions 
occurs where

• Collecting terms, we then have

2211 bxabxa +=+

1221 bbxaxa −=−

222

Solving Pairs of Equations

• Solving for x yields

21

12ˆ
aa
bbx

−
−

=
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Solving Pairs of Equations

• Evaluating f(x)1 at this value yields

21

1221

21

21
1

21

12
1 aa

baba
aa
aab

aa
bba

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

1

21

12
11)ˆ( b

aa
bbaxf +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

224

Solving Pairs of Equations

• Evaluating f(x)2 at this value yields

21

1221

21

21
2

21

12
2 aa

baba
aa
aab

aa
bba

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

2

21

12
22)ˆ( b

aa
bbaxf +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
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Solving Pairs of Equations

• Thus, 

which confirms that our solution for x is 
correct; see Figure A-66.

)ˆ()ˆ( 21 xfxf =

FIGURE A-66 226

111)( bxaxf +=

222)( bxaxf +=1b

2b

2

2

a
b− xx̂

21 )ˆ()ˆ( xfxf =
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Solving Pairs of Equations

• As a numerical example, recall Figure A-
56, where our two functions are 

• In this example, a1=2, a2= –2, b1=0 and 
b2=29.

zzMC 2)( =

zzMB 229)( −=

228

Solving Pairs of Equations

• The intersection occurs where 

• Thus, the optimal solution for our 
household (measured in kWh x 100) is

zz ˆ2ˆ229 =−

25.7ˆ =z
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Solving Pairs of Equations

• The total benefit at this optimum is the 
shaded area in Figure A-67, denoted B(z^).

FIGURE A-67 230

29

14.5

zzMC 2)( =

7.25 14.5 kWh x 100

c/kWh

zzMB 229)( −=

)ˆ(zB
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Solving Pairs of Equations

• The total cost at the optimum is the shaded 
area in Figure A-68, denoted C(z^).

FIGURE A-68 232

29

14.5

zzMC 2)( =

7.25 14.5 kWh x 100

c/kWh

zzMB 229)( −=)ˆ(zC
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Solving Pairs of Equations

• The net benefit at the optimum is the 
difference between these two areas, denoted 
NB(z^) in Figure A-69.

FIGURE A-69 234

29

14.5

zzMC 2)( =

7.25 14.5 kWh x 100

c/kWh

zzMB 229)( −=

)ˆ(zNB
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Solving Pairs of Equations

• Calculating these areas yields

B(z^) = $157.6875
C(z^) = $52.5625 
NB(z^) = $105.125

2.4 VERTICAL SUMMATION
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Vertical Summation

• We will often find it necessary to work with 
the sum of two functions or the difference 
between them.

• For example, let us construct a function g(x) 
such that 

21 )()()( xfxfxg +=

238

Vertical Summation

• Suppose

111)( bxaxf +=

222)( bxaxf +=
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Vertical Summation

• Then

• Thus, g(x) has slope a1+a2, and vertical 
intercept b1+b2.

)()()( 2121 bbxaaxg +++=

240

Vertical Summation

• Graphically, g(x) is the vertical sum of f(x)1
and f(x)2, as illustrated in Figure A-70 for a 
case where a1>0 and a2<0.
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FIGURE A-70 241

222)( bxaxf +=1b

2b

2

2

a
b− x

111)( bxaxf +={
{

21 bb +
+

)(xg

242

Vertical Summation

• Similarly, we can construct a function h(x) 
as the difference between our two functions: 

• See Figure A-71.

21 )()()( xfxfxh −=

)()( 2121 bbxaa −+−=
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FIGURE A-71 243

2)(xf
1b

2b

2

2

a
b− x

1)(xf

{

21 bb −

−

{
)(xh

244

Vertical Summation

• Consider a numerical example. 
• Suppose

24)( 1 += xxf

142)( 2 +−= xxf
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Vertical Summation

• Then

• See Figures A-72 and A-73 respectively.

162)142()24()()( 21 +=+−++=+ xxxxfxf

xxxxfxf 612)24()142()()( 12 −=+−+−=−

FIGURE A-72 246

}
+

x

1)(xf

2)(xf

}
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FIGURE A-73 247
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2.5 HORIZONTAL SUMMATION
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Horizontal Summation

• Now suppose we have two functions in two 
variables x1 and x2:

where x1 and x2 are measured in the same 
units.

11111 )( bxaxf +=

22222 )( bxaxf +=

250

Horizontal Summation

• For example, these two functions might 
represent marginal willingness-to-pay 
(WTP) of two individuals, where f(xi)i is the 
WTP of person i for a marginal unit of 
consumption, as a function of the amount xi
that she currently consumes. 

• See Figure A-74.
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FIGURE A-74 251

1b

2b

2

2

a
b− x

11 )(xf

1

1

a
b−

22 )(xf

252

Horizontal Summation

• In the context of the demand example, we 
would measure f(xi)i in dollars per unit, and 
use pi to denote the dependent variable:

• We interpret this as an inverse demand
curve for person i, relating demand xi to the 
price pi she faces in the market.

iiii bxap +=
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Horizontal Summation

• Now suppose both individuals face the 
same price in the market, such that 

• We can then construct an aggregate 
demand curve as the horizontal summation
of the two individual demand curves.

ppp == 21

254

Horizontal Summation

• In what sense is this a horizontal
summation?

• At any given value of p, we add the 
horizontal distances measured off the two 
individual demand curves to construct a 
new aggregate consumption variable
X=x1+x2 as a function of p; see Figure A-
75.
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FIGURE A-75 255
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11)(xf {

1
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{

22 )(xf

+
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2

2

1

1

a
b

a
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+

−

)( Xp

x

256

Horizontal Summation

• We will return to the question of why p(X) 
is a drawn as a dashed line above b1 in 
Figure A-75 (see s.270).

• Right now, our interest is in how we find 
the formula for the aggregate function, p(X).
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Horizontal Summation

• We solve the problem by first recognizing 
that the horizontal summation is actually the 
vertical summation of the inverse functions, 
where x is plotted on the vertical axis and p
is plotted on the horizontal axis; see Figure 
A-76 for this inversion of Figure A-75.

FIGURE A-76 258

1b 2b

2

2

a
b−

p
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1
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b−
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1
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Horizontal Summation

• The second step is to construct the inverse 
demand functions for each person 
analytically.

260

Horizontal Summation

• For person i:

where                       and 

iii xabp =−→     iii bxap +=

i

i a
1

=α

i

i
i a

bpx −
=→     iii ppx βα +=→ )(     

i

i
i a

b−
=β
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Horizontal Summation

• Now take the vertical summation of x1(p) 
and x2(p) to find X(p):

)()( 2211 βαβα +++= pp

)()( 2121 ββαα +++= p

)()()( 21 pxpxpX +=

262

Horizontal Summation

• Now take the inverse of this function to 
express p as a function X:

pX )()( 2121 ααββ +=+−

21

21

21 αα
ββ

αα +
+

−
+

=→
Xp     
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Horizontal Summation

• Thus, we have 

where                             and
21

21

αα
ββ

+
+

−=B
21

1
αα +

=A

BAXXp +=)(

264

Horizontal Summation

• Substituting for αi and βi from s.257 we 
have

and

21

21

21

21 11
11

aa
aa

aa

A
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
+

=
αα

21

1221

aa
babaB

+
+

−=
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FIGURE A-77 265
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Horizontal Summation

• Consider an example. Suppose

is the marginal WTP of person 1 for bread, 
where x1 is her consumption of bread.  

111 612)( xxp −=
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Horizontal Summation

• Similarly, suppose

is the marginal WTP of person 2 for bread, 
where x2 is his consumption of bread.  

• See Figure A-78.

222 315)( xxp −=

FIGURE A-78 268

x

11 )(xp

12

2

22 )(xp

5
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Horizontal Summation

• These WTP functions are interpreted as  
inverse demand functions. 

• Now let us construct the demand functions
for each person (the inverse of the inverse 
demand functions).

• These demand functions expressed quantity 
consumed as a function of price, p.

270

Horizontal Summation

• For person 1:

• For person 2:

6
2)(

6
12612 111

ppxpxxp −=→
−

=→−=          

3
5)(

3
15315 222

ppxpxxp −=→
−

=→−=          
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Horizontal Summation

• We can now construct aggregate demand:

• This tells us the total quantity consumed at 
any given price.

2
7)()()( 21

ppxpxpX −=+=

272

Horizontal Summation

• Now construct the inverse of this aggregate 
demand function:

• This the inverse aggregate demand function; 
see Figure A-79.

XXpXppX 214)(7
22

7 −=→−=→−=          



Kennedy: Analytical Methods Copyright Peter Kennedy 2019

kennedy-economics.ca 137

FIGURE A-79 273

x
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)( Xp

274

Horizontal Summation

• This inverse aggregate demand is the 
horizontal summation of two individual 
inverse demand functions; see Figure A-80.
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FIGURE A-80 275
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Horizontal Summation

• Why is p(X) dashed above p=12?
• Above p=12, person 1 consumes zero but 

our simple mathematical calculations treat 
her consumption at p>12 as negative.

• Thus, above p=12 the true inverse aggregate 
demand coincides with the inverse demand 
of person 2; see Figure A-81.
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FIGURE A-81 277
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PART 3: REVIEW QUESTIONS 
 

Questions 1 – 15 relate to the following data. The marginal benefit and marginal cost of 
some activity x are given by 
 
 xxMB 5154)( −=   and   xxMC 710)( +=  
 
respectively. Figure 1 provides a graph of each function. 
 
 
 

$ per unit

x

1)(xf

2)(xf

 
FIGURE 1 

 
 
1. The function labeled 1)(xf  is the best representation of )(xMB . 
A. True 
B. False 
 
2. The vertical intercept for )(xMC  is 
A. 10/7 
B. 7 
C. 10 
D. None of the above 
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3. The horizontal intercept for )(xMB  is 
A. 154 
B. 5/154 
C. -5 
D. None of the above 
 
4. The optimal solution for x (where marginal benefit and marginal cost are equated) is 
A. 10 
B. 12 
C. 15 
D. 20 
 
5. Marginal benefit at the optimum is 
A. 149 
B. 10 
C. 94 
D. 12 
 
6. Marginal cost at the optimum is 
A. 3 
B. 94 
C. 27 
D. 10 
 
7. Total benefit at the optimum is 
A. 1488 
B. 624 
C. 864 
D. None of the above 
 
8. Total cost at the optimum is 
A. 1488 
B. 624 
C. 864 
D. None of the above 
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9. Total net benefit at the optimum is 
A. 1488 
B. 624 
C. 864 
D. None of the above 
 
10. The rate of change of the benefit function at the optimum is 
A. 149 
B. 10 
C. 94 
D. 12 
 
11. Let )()()( xMCxMBxH −=  denote the vertical difference between )(xMB  and 

)(xMC . Then  
A. xxH 2164)( +=  
B. xxH 12144)( −=  
C. xxH 2144)( −=  
D. xxH 12164)( −=  
 
12. The horizontal intercept of )(xH  is 
A. 0 
B. 72 
C. 41/3 
D. 12 
 
13. Compare your answer to Q.12 with your answer to Q.4. Is this relationship a 
coincidence? 
A. Yes 
B. No 
 
14. The area ∫

12

0
)( dxxH  is equal to 

A. 1488 
B. 624 
C. 864 
D. None of the above 
 
15. Compare your answer to Q.14 with your answer to Q.9. Is this relationship a 
coincidence? 
A. Yes 
B. No 
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Questions 16 – 37 relate to the following data. The marginal benefit and marginal cost of 
some activity x are given by 
 
 xxMB 336)( −=   and   xxMC 9)( =  
 
respectively. Figure 2 provides a graph of each function. 
 
 

 

$ per unit

x

2)(xf

1)(xf

 
FIGURE 2 

 
 
 
16. The function labeled 1)(xf  is the best representation of )(xMB . 
A. True 
B. False 
 
17. The vertical intercept for )(xMC  is 
A. 0 
B. 36 
C. 12 
D. None of the above 
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18. The horizontal intercept for )(xMB  is 
A. 12 
B. 36 
C. 3 
D. 9 
 
19. The optimal solution for x (where marginal benefit and marginal cost are equated) is 
A. 0 
B. 1 
C. 2 
D. 3 
 
20. Marginal benefit at the optimum is 
A. 36 
B. 27 
C. 9 
D. 0 
 
21. Marginal cost at the optimum is 
A. 3 
B. 9 
C. 12 
D. None of the above 
 
22. Total benefit at the optimum is 
A. 54 
B. 81/2 
C. 189/2 
D. None of the above 
 
23. Total cost at the optimum is 
A. 54 
B. 81/2 
C. 189/2 
D. None of the above 
 
24. Total net benefit at the optimum is 
A. 54 
B. 81/2 
C. 189/2 
D. None of the above 
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25. The rate of change of the cost function at the optimum is 
A. 9 
B. 3 
C. 12 
D. 27 
 
26. Let )()()( xMCxMBxW −=  denote the vertical difference between )(xMB  and 

)(xMC . Then  
A. xxW 636)( −−=  
B. xxW 336)( +=  
C. xxW 1236)( +−=  
D. xxW 1236)( −=  
 
27. The horizontal intercept of )(xH  is 
A. 0 
B. 9 
C. 3 
D. 12 
 
28. Compare your answer to Q27 with your answer to Q19. Is this relationship a 
coincidence? 
A. Yes 
B. No 
 
29. The area ∫

3

0
)( dxxW  is equal to 

A. 54 
B. 81/2 
C. 189/2 
D. None of the above 
 
30. Compare your answer to Q29 with your answer to Q24. Is this relationship a 
coincidence? 
A. Yes 
B. No 
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Now suppose we introduce an additional marginal cost function, given by 
 
 xxMD 6)( =  
 
31. Let )()()( xMDxMCxS +=  denote the revised cost, equal to the vertical sum of 

)(xMC  and )(xMD . Then  
A. xxS 3)( =  
B. xxS 54)( =  
C. xxS 96)( +=  
D. xxS 15)( =  
 
 
32. The revised optimum is the solution to )()( xSxMB = . It is 
A. 0 
B. 1 
C. 2 
D. 3 
 
33. Total benefit at the revised optimum is 
A. 30 
B. 36 
C. 66 
D. 96 
 
34. Revised total cost at the revised optimum is 
A. 30 
B. 36 
C. 66 
D. 96 
 
35. The two shaded areas in Figure 3 are equal. 
A. True 
B. False 
 
36. Revised total net benefit at the revised optimum is 
A. 30 
B. 36 
C. 66 
D. 96 
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$ per unit

x

)(xMB

12

36

27

)(xD

)(xS

2

30

)(xMC

3

 
FIGURE 3 

 
 
 
37. (The absolute value of ) the area ∫ ∫−

3

2

3

2
)()( dxxSdxxMB  is equal to 

A. 3 
B. 6 
C. 9 
D. 6 
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Questions 38 – 40 relate to the following data. Two firms each use an input x to produce 
output. The inverse demands for this input are 
 
 111 240)( xxw −=   and   222 850)( xxw −=  
 
respectively. Let w denote the price paid for this input. Let X denote 21 xx + . 
 
38. The demand for x by firm 1 is 
A. wwx 1090)(1 −=  

B. 
240

1)(1
wwx −=  

C. 
2

20)(1
wwx −=  

D. wwx 240)(1 −=  
 
39. The demand for x by firm 2 is 

A. 
84

25)(2
wwx −=  

B. wwx 850)(2 −=  

C. 
850

1)(2
wwx −=  

D. wwx −=
8
50)(2  

 
40. The inverse aggregate demand for x is 

A. 
8

5
4

125)( wwX −=  

B. 
5

842)( XXw −=  

C. XXw 1090)( −=  

D. 
10

9)( wwX −=  
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ANSWER KEY 
 
 
1. B. The )(xMB  has negative slope but 1)(xf  has positive slope. 
 
2. C. See Figure RA-1. 
 
 

 

$ per unit

x

)(xMC

)(xMB

154

5
154

10

12

94

 
FIGURE RA-1 

 
 
 
3. D. The horizontal intercept is calculated by setting 0)( =xMB  and solving for x. This 
yields 154/5. See Figure RA-1. 
 
4. B. The optimal value solves )()( xMCxMB = . This yields 12ˆ =x . See Figure RA-1. 
 
5. C. 94)12(5154)ˆ( =−=xMB . See Figure RA-1. 
 
6. B. 94)12(710)ˆ( =+=xMC . See Figure RA-1.  
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7. A. This is the shaded area in Figure RA-2. It comprises  
 

 
2

)12(60
=A    plus   )12(94=B  

 
 
 

$ per unit

x

)(xMC

)(xMB

154

5
154

10

12

94

A

B

 
FIGURE RA-2 

 
 
 
8. B. This is the shaded area in Figure RA-3. It comprises 
 

 
2

)12(84
=A    plus   )12(10=B  

 
9. C. This is the shaded area in Figure RA-4. It is equal to difference between the areas in 
Figure RA-2 and Figure RA-3.  
 
10. C. The rate of change of the benefit function is the marginal benefit function. 
Evaluated at 12ˆ =x , it is equal to 94. 
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FIGURE RA-3 

 
 
 

$ per unit
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FIGURE RA-4 



Kennedy: Analytical Methods   © Peter Kennedy 2019 

kennedy-economics.ca 152

11. B. xxxxMCxMBxH 12144)710()5154()()()( −=+−−=−= . It is depicted in 
Figure RA-5. 

 
 
 

$ per unit

x

)(xMC

)(xMB

154

5
154

10

12

94

144

)(xH

}

}

−

 
FIGURE RA-5 

 
 
 
12. D. See Figure RA-5. 
 
13. B. The horizontal intercept of )(xH  occurs where 0)( =xH . Since 

)()()( xMCxMBxH −= , it follows that the intercept of )(xH  is at 12ˆ =x , where 
)()( xMCxMB = . 

 
14. C. There are two ways to arrive at this answer: the elegant way and the inelegant 
way. First, the elegant way. )(xH  is the difference between two functions, 

)()( xMCxMB − , so the area under )(xH  must be equal to the difference in the areas 
under )(xMB  and )(xMC , which we have already calculated (in Q.7 and Q.8 
respectively). Putting these words into math: 
 

 8646241488)()()]()([)(
12

0

12

0

12

0

12

0

=−=−=−= ∫∫∫∫ dxxMCdxxMBdxxMCxMBdxxH  
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Now the inelegant way: 
 

 ∫
12

0

)( dxxH  is the shaded area in Figure RA-6. Its area is 864
2

)12(144
=  

 
 
 

$ per unit

x

)(xMC

)(xMB
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10

12

94

144

)(xH

 
FIGURE RA-6 

 
 
 
15. B. See the reasoning in the answer to Q.14 
 
16. A. It has negative slope. 
 
17. A.  
 
18. A. Set 0336 =− x  to yield 12=x . 
 
19. D. The optimal value solves )()( xMCxMB = . This yields 3ˆ =x . See Figure RA-7. 
 
20. B. 27)3(336)ˆ( =−=xMB . See Figure RA-7. 
 
21. D. 27)3(9)ˆ( ==xMC . See Figure RA-7. 
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FIGURE RA-7 

 
 
 
22. C. This is the shaded area in Figure RA-8. It comprises  
 

 
2

)3(9
=A    plus   )3(27=B  

 
23. B. This is the shaded area in Figure RA-9. It is equal to 
 

 
2

)3(27     

 
24. A. This is the shaded area in Figure RA-10. It is equal to difference between the areas 
in Figure RA-8 and Figure RA-9.  
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FIGURE RA-8 
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FIGURE RA-9 
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FIGURE RA-10 

 
 
 
25. D. The rate of change of the cost function is the marginal cost function. Evaluated at 

3ˆ =x , it is equal to 27. 
 
26. D. xxxxMCxMBxW 1236)9()336()()()( −=−−=−= . It is depicted in Figure RA-
11. 
 
27. C. See Figure RA-11. 
 
28. B. The horizontal intercept of )(xW  occurs where 0)( =xW . Since 

)()()( xMCxMBxW −= , it follows that the intercept of )(xW  is at 3ˆ =x , where 
)()( xMCxMB = . 

 

29. A. Recall the answer to Q.14 above. The same logic applies here. ∫
3

0

)( dxxW  is the 

shaded area in Figure RA-12. Its area is 54
2

)3(36
=  

 
30. B. Again, recall the reasoning in the answer to Q.14 above. 
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FIGURE RA-11 
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FIGURE RA-12 
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31. D. xxxxDxMCxS 1569)()()( =+=+= . It is depicted in Figure RA-13. 
 
32. C. The revised optimum is where )()( xSxMB = . Setting xx 15336 =−  and solving 
for x yields 2* =x . See Figure RA-14. 
 
33. C. This is the shaded area in Figure RA-15. It comprises  
 

 
2

)2(6
=A    plus   )2(30=B  

 
34. A. This is the shaded area in Figure RA-16. It is equal to 
 

 
2

)2(30  

 
35. A. The lower area is  
 

 ∫
2

0

)( dxxD  

 
The upper area is the difference between the shaded area in Figure RA-16 and the shaded 
area in Figure RA-17: 
 

 ∫∫∫ ∫∫ =−+=−
2

0

2

0

2

0

2

0

2

0

)()()]()([)()( dxxDdxxMCdxxDxMCdxxMCdxxS  

 
36. B. This is the shaded area in Figure RA-18. It is equal to difference between the areas 
in Figure RA-15 and Figure RA-16.  
 
37. C. In words, this is equal to 
 
 [area between 2 and 3 under )(xMB ] – [area between 2 and 3 under )(xS ] 
 
Note that this difference is a negative value. It is the shaded area in Figure RA-19. 
 
In absolute value, it is equal to 
 

 9
2

)23(18
=

−  
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FIGURE RA-13 
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FIGURE RA-14 
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FIGURE RA-15 
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FIGURE RA-16 
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FIGURE RA-17 
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FIGURE RA-18 
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FIGURE RA-19 

 
 
 

38. C. Inverting the inverse demand of person 1: 
 

 
2

20)(402240 111
wwxwxxw −=→−=→−=              

 
39. A. Inverting the inverse demand of person 2: 
 

 
84

25
88

50)(508850 222
wwwxwxxw −=−=→−=→−=               

 
40. B. Construct the aggregate demand: 
 

 
8

5
4

105
84

25
2

20)()()( 21
wwwwxwxwX −=⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −=+=  

 
Invert this to fund the inverse aggregate demand (see Figure RA-20): 
 

 
5

842)(
4

105
8

5
8

5
4

105 XXwXwwX −=→−=→−=              
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FIGURE RA-20 
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